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Abstract

Non-equatorial space elevators are interesting as they
give more freedom for anchor location, avoid the
highly occupied geosynchronous orbit and the areas
of highest radiation in the Van Allen belts. We re-
view the static equation for a uniform-stress tether,
and use it to study the tapering of a uniform-stress
tether in a general potential field. We then focus on
a rotating coulomb potential and study the range of
latitudes that are allowed for a uniform-stress space
elevator. Finally, we look at a few practical issues
that are raised by non-equatorial space elevators.

Introduction

A space elevator is a very long tether. One end is at-
tached to an anchor station on the surface of a planet.
The other end is attached to a counterweight located
beyond the planet’s synchronous altitude. Past that
altitude centrifugal force due to the planet’s rota-
tion exceeds the gravitational force, so the counter-
weight is pulled away from the planet. Thus, the
tether is kept in tension between anchor and counter-
weight. Payloads can be sent into space by climbing
the tether, much more efficiently than with rockets.

The space elevator concept was first proposed in
Russian [2, 3] by Artsutanov, and later introduced
in English by Pearson [4]. Science fiction writers [5]
made the idea popular. But materials with the nec-
essary strength to weight ratio seemed unlikely. And
the proposed elevators were much too heavy for fore-
seeable launch technologies. This changed with the
arrival of carbon nanotubes, and the proposal by Ed-
wards [1] of a space elevator concept that would only
require a few tons of material to be lifted by conven-
tional launch means.
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To date, studies have considered that the space el-
evator would be anchored on the equator, as that is
where the equilibrium of the tether is easiest to un-
derstand. Clarke [5] even considered that the eleva-
tor would have to be placed on the equator at a local
minimum of the Earth’s geopotential. In fact, there
is no reason for such limitations, and non-equatorial
space elevators can present a number of advantages:

� There is increased flexibility in the selection of
the anchor location.

� The tether does not have to go through the heav-
ily occupied (geo)synchronous orbit.

� The tether avoids the areas of most intense ra-
diation of the Van Allen belts [6]. This is par-
ticularly important when considering the trans-
portation of humans.

� The tether can avoid the Martian moons (in the
case of a Martian elevator).

Figure 1 shows a diagram of a non-equatorial space
elevator. Three forces hold it in equilibrium: gravity,
centrifugal force, and the tension at the anchor. The
major difference with equatorial elevators is that the
elevator is located entirely on one side of the equa-
torial plane. Therefore, gravity tends to pull the ele-
vator towards the equatorial plane. This tendency is
countered by the force applied by the anchor, allow-
ing the elevator to be in equilibrium.

In this paper we will be considering uniform-stress
space-elevators. A uniform-stress tether is a tether in
which the cross-section is varied (tapered) in order to
keep the stress in the tether uniform. Space elevators
are generally designed to have uniform stress as this
maximizes the ratio of payload mass to elevator mass.

To understand off-equator space elevators, we will
first review the static equations that any uniform-
stress tether must satisfy, in Section 1. Then we will
apply these equations to the relevant case of a rotat-
ing Coulomb potential in Section 2. In Section 3 we
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Figure 1: A non-equatorial space elevator, and some of the angles that are used to characterize it.

will study the problem of determining the maximum
latitude a space elevator can start from. Finally, Sec-
tion 4 covers a few practical concerns that are specific
to non-equatorial space elevators.

All the notation that is used in this paper can be
found in Table 1. Examples will often use values that
are typical for Earth and the tethers considered by
Edwards [1]. Table 2 summarizes these values.

1 Equations for a Static Uni-

form Stress Tether

First we introduce the equations for a static uniform-
stress tether in a potential V .

d~r

ds
=

~T

T
(1)

d~T

ds
= ρA ~∇V (2)

T = σ0A (3)

In these equations s is a curvilinear coordinate
along the tether, ~T is the tension that the top part of
the tether applies to the bottom part, ~r is a position
vector, A is the position dependent cross-sectional
area of the tether, ρ is the density of the tether,
and σ0 is the stress in the tether. Equation (1) ex-
presses that the tether cannot bear any shear load:
the tension in the tether must be tangent to the ca-
ble. Equation (2) expresses Newton’s second law: the
change in tension along a small piece of tether must
oppose the force due to the potential. Equation (3)
expresses that the tether has a uniform stress. Be-
cause the tether is uniformly stressed, we need not

consider elastic effects as they can be incorporated
into σ0 and ρ.

Equations (2) and (3) can be combined to eliminate
the area of the cable.

d~T

ds
=
ρT

σ0

~∇V (4)

1.1 Taper Profile

First we shall look at the tangential part of the static
equations. Integrating them will lead to a relation
between the cable cross-section A and the local po-
tential V .

First, we take the dot product of (4) with d~r, divide
by T , and use (1) to simplify.

dT

T
=

ρ

σ0

d~r · ~∇V (5)

Integrating we get an expression for T and there-
fore for A.

T

T0

=
A

A0

= e
ρ

σ0
V (6)

This formula shows that the area of the tether at a
given position is directly a function of the potential V
at that position. If ∆V is the difference in potential
energy between the base of the tether and the point
where the potential energy reaches a maximum, then
we can express the taper ratio of the tether as:

Amax

A0

= e
ρ

σ0
∆V (7)

From this expression we can introduce a taper pa-
rameter ρ

σ0

∆V that characterizes the difficulty of



Symbol Description

s Curvilinear coordinate along the tether.
~r Position vector of a point on the tether.
r Distance from the center of the planet.
r⊥ Distance from the rotation axis of the

planet.
rs Distance from the center of the planet

to the synchronous altitude.
ρ Density of tether material under stress.
σ0 Target stress in tether.
A Cross-sectional area of tether.
~T Tension applied by the top part of the

tether to the bottom part.
m Mass of the counterweight.
V Potential field the tether is placed in.
θ Angle between the equatorial plane and

the position vector ~r.
φ Angle between the equatorial plane and

the tangent to the tether.
ψ Angle between the tangent to the tether

and the position vector ~r
êφ Unit vector in the direction of increas-

ing φ.
G Gravitational constant.
Mp Mass of the planet.
Ω Angular velocity of planet rotation.
V0 Characteristic specific energy of the ro-

tating Coulomb potential field.
∆V Difference in potential between the base

of the tether and the point where the
potential is greatest.

~̃g Combined gravitational and centrifugal
field, in normalized form.

α Tether shape factor.
P/M Payload to tether mass ratio.
(~v)

⊥
Part of some vector ~v that is normal to
the tether.

d̃ Distance d in units of rs.

d̆ Distance d in units of αrs.
x0 The value of variable x at the anchor

point (except V0 and σ0).

Table 1: Notation that is used in this paper.

building a uniform-stress structure across a potential
difference ∆V . When it is much smaller than one, al-

Symbol Typical Value

G 6.67 · 10−11 SI
Mp 5.98 · 1024 kg
Ω 7.29 · 10−5 rad/s
V0 9.46 · 106 J/kg
rs 42.2 · 106 m
r0 6.38 · 106 m
r̃0 0.151
ρ 1300 kg/m3

σ0 65 · 109 N/m2

α 0.189

Table 2: Typical values for the Earth and Edwards’
tether parameters [1]. When nothing is specified,
these values are used for examples.

most no tapering is necessary. When it is much larger
than one the taper ratio becomes prohibitively large.
This taper parameter is closely related to the ratio
of Pearson’s characteristic height [4] to the geosyn-
chronous altitude.

1.2 Tether Shape Equation

Projecting (4) onto a direction tangent to the tether
allowed us to determine the taper profile. We now
project perpendicularly to the tether direction and
combine with (1) to determine the shape the tether
adopts in the gravitational potential:

d2~r

ds2
=

dT̂

ds
=

ρ

σ0

(

~∇V
)

⊥

(8)

where T̂ = ~T/T is a unit vector tangent to the tether,

and (~∇V )⊥ denotes the projection of ~∇V perpendic-
ularly to T̂ .

Equation (8) determines the tether’s curvature.
The tether curves towards areas of higher potential,
and the curvature is proportional to the component
of the gravity field that is normal to the tether. This
interpretation becomes more apparent in the case of
a planar tether where we can identify the direction of
the tether by an angle φ so that

dφ

ds
=

ρ

σ0

êφ · ~∇V (9)

where êφ is a unit vector in the direction of increas-
ing φ.



1.3 Boundary Conditions

To have a complete description of the static tether, we
additionally need to consider boundary conditions.
On one end, the tether is attached to the anchor
point on the planet. The anchor simply needs to
provide a force equal to the tension in the tether to
keep the tether static. If the base of the tether isn’t
vertical then there will be a horizontal component to
this force, so the tether will tend to pull the anchor
sideways (see Section 4.2).

From equation (6) we know that the tension in the
tether never goes to zero. Therefore, the free end of
the cable must have a force applied to it to balance
the tension in the cable. That force is provided by a
counterweight of mass m which must satisfy:

~T = −m~∇V (10)

Thus the counterweight must be located in such a
way that the tether is tangent to the local gravity
field.

2 The Rotating Coulomb Po-

tential

So far we have considered a uniform stress tether in
an arbitrary potential V . To make further progress,
we will now consider the specific potential that ap-
plies in the case of the space elevator attached to a
planet. Because we are considering the statics of the
tether, we have to place ourselves in a reference frame
that is rotating with the planet. Thus the potential
we are interested in is a combination of the Coulomb
potential of the planet’s gravity and the centrifugal
potential due to the planet’s rotation around its axis:

V = −
GMp

r
−

1

2
r2
⊥

Ω2 (11)

In this equationG is the gravitational constant,Mp

is the mass of the planet, Ω is the angular velocity of
the planet’s rotation, r is the distance to the center
of the planet, and r⊥ is the distance to the axis of
rotation of the planet.

2.1 Planar Tether Profile

One of the first things we note about the potential
is that it is invariant by reflection about planes that

contain the planetary axis of rotation. This invari-
ance must also apply to the resulting acceleration
field. Thus, the forces caused by the potential will
all be in a plane containing the axis of rotation and
the point at which they are applied.

Therefore, if we consider a plane containing the
axis of rotation of the planet and the counterweight,
we find that the tension in the tether at the counter-
weight is in that plane. As we move down the tether,
the forces acting on the tether are in that plane, so
the tether remains in that plane all the way to the
anchor.

We conclude that the shape of the space elevator
will be planar, even in the non-equatorial case. This
greatly simplifies the problem to be solved, as we can
now work in two dimensions in a plane that is per-
pendicular to the equatorial plane.

2.2 Non-Dimensional Problem

Reducing a problem to non dimensional form is an
excellent way of extracting the physically important
parameters. We now apply this methodology to the
space elevator.

First we note that the potential can be written in
terms of the synchronous radius rs = (GMp/Ω

2)1/3

and the characteristic potential V0 = (GMpΩ)2/3 in
the form:

V = −V0

(

rs
r

+
1

2

r2
⊥

r2s

)

(12)

Thus, rs, the distance from the center of the planet
to the synchronous orbit, is the natural distance scale
for this problem. We shall therefore rewrite (8) re-
placing all distances d by normalized distances d̃ =
d/rs, and inserting the expression for V from (12):

d2~̃r

ds̃2
=
ρV0

σ0

(

~̃r

r̃3
− ~̃r⊥

)

⊥

= −α
(

~̃g
(

~̃r
))

⊥

(13)

This is the differential equation that determines the
shape of the tether in a rotating Coulomb potential.
This equation contains a single scalar parameter α
which we shall call the shape parameter.

α =
ρV0

σ0

(14)

The shape parameter is the ratio of the character-
istic potential of the potential field to the strength
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Figure 2: The normalized rotating Coulomb field ~̃g.
The equatorial plane is horizontal, and the North-
South direction is vertical. Equipotential lines and
field values are plotted along with three example
tether solutions. The tether solutions are for α =
0.189, r̃0 = 0.151, θ0 = 30 � and inclinations ψ0 of
35 � , 55 � and 75 � .

to weight ratio of the tether material. It also natu-
rally appears in (5), (6) and (7) when they are ap-
plied to the rotating Coulomb potential. The shape
parameter determines how deep it is possible to go
into the normalized potential well before the taper
ratio becomes excessively high. Indeed, well below
the synchronous altitude, ∆V ≈ V0rs/r, so the taper
parameter is approximately α/r̃. Thus for α� r̃, the
taper ratio is close to 1, while for α � r̃, the taper
ratio is gigantic.

In the case of the Earth and the tether parameters
from [1], α ≈ 0.189 and r̃ ≈ 0.151. Thus we are close
to the limit of feasibility.

2.3 Solving the Shape Equation Qual-

itatively

To get an idea of the solutions of (13) that satisfy the
boundary condition (10), it is useful to study Figure 2

which is a plot of the vector field ~̃g. We shall assume
without loss of generality that the anchor is in the
upper right-hand quadrant (x > 0 and y > 0). More
complete derivations can be found in [7].

To begin, we note that the North-South component
of the field always points towards the equator. This
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Figure 3: Normalized distance from the center of the
Earth to the counterweight at latitude θ0 = 30 � .

has two consequences. First, because of (4) the y

component of ~T satisfies:

y
dTy

ds
> 0 (15)

Second, because of (10), the tip of the tether at the
counterweight has to be sloped towards the equatorial
plane (i.e., yTy < 0. Combining these two facts, we
find that Ty is negative over the whole length of the
tether. This implies via (1) that the distance from
the tether to the equatorial plane must monotonically
decrease as we move along the tether from the anchor
point to the counterweight. If the tether ever crosses
the equatorial plane, or starts heading away from the
equatorial plane, the boundary condition will never
be satisfied.

Below the synchronous altitude, ~̃g is pointing down
and to the left. As we have seen, T is pointing down
and to the right. Therefore because of (13) the tether
only curves away from the equator (φ increases mono-
tonically). We will use this result in Section 3.1.

Figure 2 shows how solutions of (13) depend on
the inclination of the tether at the anchor. Case
(II) satisfies the boundary condition at the counter-
weight, while (I) and (III) extend infinitely without
the boundary condition ever being satisfied.

Indeed, if the inclination is too low as in case (I),
then the tether curves away from the equatorial plane
before suitable boundary conditions for a counter-
weight can be found. If the inclination is increased,



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60

In
cl

in
at

io
n 

in
 d

eg
re

es

Latitude in degrees

(I)

(II)

(III)

Figure 4: Possible inclinations for an Earth space
elevator as a function of latitude (α = 0.189).

the point at which the tether is parallel to the equa-
torial plane moves out towards infinity, and ceases
to exist. At that point, it becomes possible to satisfy
the boundary condition at infinity. As the inclination
is increased more, the altitude of the counterweight
gets lower and lower, as in case (II). Once the al-
titude of the counterweight reaches the synchronous
altitude, satisfying the boundary condition becomes
impossible once again. The tether crosses the equa-
torial plane before reaching the synchronous altitude
preventing it from being terminated as in case (III).

We conclude that for a given anchor location, there
will generally be a range of inclinations for which a
tether shape that satisfies the counterweight bound-
ary condition exists. Within that range, the coun-
terweight altitude decreases from infinity to the syn-
chronous altitude as in Figure 3.

Figure 4 shows the inclinations that lead to valid
tether solutions in the case of the Earth space eleva-
tor. The graph has been truncated at an inclination
of 90 � . Higher inclinations are mathematically possi-
ble, but the tether would have to go underground for
the first part of its length.

3 Maximum Anchor Latitude

As we saw in Figure 4, there is a maximum latitude
beyond which no inclination allows the tether to sat-
isfy the counterweight boundary conditions. With
Figure 5(a), it is possible to determine the maximum
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Figure 5: Maximum reachable latitude as a function
of normalized planetary radius for different values of
the shape parameter α, assuming maximum tether
inclinations at the anchor of 90 � and 45 � .

anchor latitude in the general case. This figure was
generated by considering, for a given planetary ra-
dius and shape parameter, which latitude would lead
to an infinitely long tether with 90 � inclination.

This figure isn’t very useful for practical purposes
because it accepts tethers that are very inclined at the
base. As we shall see in Section 4.1, such tethers have
a small payload. Therefore, we have also considered



the case where tether inclination is limited to 45 � in
Figure 5(b).

Clearly these two figures are very similar except for
a different scaling of the vertical axis. By considering
a number of limit cases we shall try to explain this
similarity and better understand the characteristics
of the plots. For clarity we introduce the function
θmax(r̃0, ψmax, α) which gives the maximum latitude
from the normalized planetary radius, the maximum
acceptable tether inclination and the shape parame-
ter.

θmax is the latitude at which a tether inclined by
θmax at the anchor is right at the limit between case
(I) and case (II). At that limit, the tether solution is
infinitely long. So, to study θmax, we shall be study-
ing tether solutions that go to infinity.

3.1 Small Planet Limit

First we shall direct our attention to the case where
r̃0 � 1. This approximation corresponds to the
case where the planet is small compared to the syn-
chronous altitude (we could also say that the planet
rotates slowly compared with an object that would
orbit near ground level). This is a good approxima-
tion for most known planetary bodies; the gas giants
are the main exception. For Earth r̃0 ≈ 0.151 and for
Mars r̃0 ≈ 0.166.

As always (see Section 2.3), the angle φ decreases
with altitude, as does the distance to the equatorial
plane. Because the planet is small, the distance to the
equatorial plane at the anchor is much smaller than
the distance to the synchronous altitude. Therefore,
to avoid crossing the equatorial plane, the tether is
nearly parallel to the equatorial plane far before the
synchronous altitude. This means that any signifi-
cant tether curvature occurs well below that altitude.
Well below synchronous altitude, the centrifugal force
term in ~̃g(~̃r) can be ignored, so (13) reduces to

d2~̃r

ds̃2
= α

(

~̃r

r̃3

)

⊥

(16)

This equation can be normalized by changing the
length scale by a factor α

d2~̆r

ds̆2
=

(

~̆r

r̆3

)

⊥

(17)

where the distance d̆ is the normalized version of d̃
and corresponds to d̃/α. This new normalization is
very satisfying as the tether equation contains no con-
stants at all. However, to prevent confusion with the
previous normalization of distances, we will avoid this
notation whenever possible.

The consequence is that θmax is only a function of
r̃0/α and ψmax). There is one fewer parameters to
consider. In Figure 5, for small values of the normal-
ized planetary radius, the curves for different shape
can be deduced from one another by stretching in the
horizontal direction.

3.2 Low Curvature Limit

Remaining in the small planet limit, we now consider
the case where r̃0/α � 1. In this case, the tether
undergoes very little curvature at all. This is partic-
ularly clear from (17) where there is very little effect
on the tether when r̆ is large.

If we ignore curvature altogether, we find that the
tether is straight. In this approximation, θmax ≈

ψmax.

3.3 High Curvature Limit

Still in the small planet limit, we now consider the
opposite case in which r̃0/α � 1. In this case, the
tether curves sharply if its inclination ψ is not small.
If the tether is inclined at its base, it very quickly
becomes vertical. This prevents large starting lati-
tudes.

Since the latitude is small and the curvature oc-
curs near the base of the tether, we will make the
approximation of a uniform gravity field over a flat
planet. In this approximation φ ≈ −ψ. We normal-
ize equation (9) and apply the small planet limit to
get

dφ

ds̃
= −

α

r̃2
0

sin(φ) (18)

which can be further simplified by taking the deriva-
tive with respect to ỹ instead of s̃

dφ

dỹ
= −

α

r̃2
0

(19)

We now integrate from 0 to y0, and note that φ = 0
at y = 0, to get an expression for the inclination at
the anchor
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ψ0 = −φ0 =
α

r̃2
0

y0 (20)

Finally, we can express y0 in terms of r0 and the
starting latitude θ0 as y0 ≈ r0θ0 to get

ψ0 =
α

r̃0
θ0 (21)

So in the high curvature limit

θmax ≈
r̃0
α
ψmax (22)

3.4 A Combined Formula

If r̃0/α is near 1 then the analysis becomes much
more difficult as both the x and y gravity components
are significant. A simple empirical interpolation can
nevertheless be used with very good results

θmax ≈
2

π
ψmax arctan

(

π

2

r̃0
α

)

(23)

It is easy to verify that this formula holds in both
limit cases. When r̃0/α is near 1, this formula gives
a result that is up to 8% too high.

Figure 6 illustrates the quality of the approxima-
tion. The match is slightly better for low values of the
tether inclination. For high inclinations the approx-
imation is slightly optimistic. In this figure we have
limited ourselves to r̃0 < 0.3, for r̃0 > 0.5 we start

to see significant deviation from (23). With larger r̃0
higher latitudes than expected can be reached.

4 Practical Considerations

So far we have considered whether it was possible to
have a space elevator at a given latitude by consid-
ering the static tether equation. In practice other
considerations will further limit the latitude that can
be reached.

4.1 Payload to Elevator Mass Ratio

One of the major concerns in space elevator construc-
tion is the ratio of payload mass to elevator mass. In-
deed, this ratio determines how much material has to
be lifted during the elevator construction for a given
elevator capacity.

We saw in Section 1.1 that the taper ratio of a
uniform-stress tether only depends on the change in
potential along the tether. The potential is uniform
at the surface of a planet, and from Figure 2 the
potential changes very slowly near the synchronous
orbit. Therefore, the taper ratio for non-equatorial
space elevators is almost the same as the taper ratio
for equatorial space elevators.

In the small planet limit, the angle between the
tether and the equatorial plane is small, except pos-
sibly near the surface of the planet. Therefore, the
length of the tether doesn’t depend much on the lat-
itude of the anchor. Moreover, since the potential
depends slowly on y, the taper profile of the non
equatorial space elevator is nearly the same as the
profile for an equatorial one.

Therefore, the only significant difference between
equatorial and non-equatorial elevators is due to the
tension at the base of the tether not being vertical in
the non-equatorial case. Since only the vertical com-
ponent of the tension can be used to lift a payload,
and elevators of equal mass have nearly equal tension
at their base, we get a reduced payload to elevator
mass ratio in the non-equatorial case:

(P/M)off−equator ≈ (P/M)equator cos(ψ0) (24)

Thus to maintain payload when leaving the equa-
tor means one has to multiply the elevator mass by
1/ cos(ψ0). For small inclinations at the anchor this
inefficiency is insignificant. But approaching inclina-
tions of 90 � is clearly out of the question.
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The designer of Earth space elevators will find Fig-
ure 7 useful to quickly determine the maximum ele-
vator latitude as a function of maximum inclination
at the anchor. For ease of use σ0 has been used in-
stead of the shape parameter, the tether density is
assumed to be fixed at 1300 kg/m3.

4.2 Horizontal Force on Anchor

In addition to reducing the payload to mass ratio
of the elevator, the inclination at the tether’s base
causes a horizontal force to be applied to the anchor
platform. This force is simply given by:

F = T0 tan(ψ0) (25)

If the anchor is a mobile ocean platform, this force
will need to be countered or else the anchor will drift
towards the equator. For heavy lift elevators signifi-
cantly off the equator, this force will have to be taken
into account when selecting the anchor platform.

4.3 Stability

An equatorial tether with very high elasticity (low
Young’s modulus), or with a small extension beyond
the synchronous altitude can be unstable [7]. For
equatorial space elevators, we would be considering
conditions far from this instability region, so it is of
no concern. In the case of non-equatorial elevators,

the curvature at the base of the elevator should cause
a reduction in the axial stiffness of the tether as seen
from the counterweight. We can therefore conjecture
that the frequency of the elevator modes will decrease
for a non-equatorial elevator. This could cause the
instability to occur for realistic tether parameters.

We conjecture that as in the equatorial case, the
instability will occur for short tethers, near the
boundary between (II) and (III), where the counter-
weight is just beyond the synchronous altitude (see
Section 2.3). However the instability will extend
to greater counterweight altitudes. The maximum
reachable is determined at the (I)-(II) boundary and
should not be affected. However, external effects such
as the presence of Earth’s Moon may limit the length
of the elevator, and thus limit the latitude.

4.4 Deployment

During the initial deployment phase, there is no con-
tact between the tether and the Earth, which takes
away the only force keeping the elevator away from
the equatorial plane. This leaves two possibilities for
deploying a non-equatorial space-elevator.

� A propulsion system can be attached to the bot-
tom of the tether during deployment to keep the
tether away from the equatorial plane. For a
10 � latitude, and a one ton elevator this option
would require hundreds of newtons of thrust over
a period of days and is therefore impractical.

� The tether can be deployed in the equatorial
plane, attached to the anchor platform, and then
moved to its final location away from the equa-
tor. If an off-equator location has been selected
to avoid interfering with geosynchronous satel-
lites, the initial deployment can be done at a
longitude where there is an available geosyn-
chronous slot, after which the elevator can be
moved to its final latitude.

4.5 Tether Shape Determined Numer-

ically

Three of the applications we mentioned for non-
equatorial space elevators were the avoidance of par-
ticular areas in the equatorial plane. In this paper we
have not pushed the analysis of (13) far enough to de-
termine whether these obstacles are indeed avoided.
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Figure 8: Numerical solutions of the shape equation
for the Earth with the standard tether parameters.
The length of the tether was set to 90,000 km. Start-
ing latitudes of 10 � , 20 � , 30 � and 40 � . Note that the
scale is different along the x and y axes.

Figure 8 shows some numerical solutions. They sug-
gest that avoiding the geosynchronous satellites is
easy. On the other hand, the most intense areas of
the radiation belts extend over 2,000 km above the
equatorial plane, which only highly inclined elevators
can avoid.

Conclusion

In this paper we have presented the equations that
govern the statics of non-equatorial uniform-stress
space elevators. These equations have been reduced
to a non-dimensional form allowing the analysis to be
applied to any tether and planetary parameters.

The tether’s taper profile has turned out to be easy
to compute as in the equatorial case, once its the
spatial configuration is known. Unfortunately, the
spatial configuration is difficult to obtain analytically.

Of particular interest to the elevator designer is the
maximum anchor latitude for a non-equatorial eleva-
tor. This problem has been solved in a few limit cases,
and an approximate formula has been proposed.

Off the equator, the tether is not vertical at the
base of the elevator. This causes a reduction in pay-
load, which is the major engineering cost of being off
the equator. It also causes a horizontal force to be
applied to the anchor station, which much be taken

into account for an ocean platform.
This study has ignored dynamic effects, in partic-

ular the stability of off-equatorial elevators has to be
checked. For small latitudes the stability of equato-
rial elevators carries over, but we expect instabilities
to occur in a wider range of conditions than in the
equatorial case. This remains to be verified. The ef-
fect of climbers on the tether also needs to be studied.

Acknowledgements

I would like to thank Valérie Leblanc for the time she
spent proof reading and pointing out bugs.

References

[1] B. Edwards and E. Westling, The Space Elevator.
Spageo Inc., 2002.

[2] Y. Artsutanov, “V kosmos na electrovoze (into
space with the help of an electric locomotive),”
Komsomolskaya Pravda, 1960.

[3] V. Lvov, “Sky-hook: Old idea,” Nature, vol. 158,
no. 3803, pp. 946–947, Nov. 1967.

[4] J. Pearson, “The orbital tower: a spacecraft
launcher using the Earth’s rotational energy.”
Acta Astronautica, vol. 2, pp. 785–799, 1975.

[5] A. C. Clarke, The Fountains of Paradise. Warner
Books, 1978.

[6] A. M. Jorgensen, R. G. Morgan, B. Gassend,
R. H. W. Friedel, and T. Cayton, “Space elevator
radiation hazards and how to mitigate them,” in
Proceedings of the 3rd Annual International Space

Elevator Conference, June 2004.

[7] V. V. Beletsky and E. M. Levin, Dynamics of

Space Tether Systems, ser. Advances in the Astro-
nautical Sciences. Amer Astronautical Society,
August 1993, vol. 83.


